MTH 301: Group Theory

Assignment II: Group Actions

Practice assignment

- 1. Show that each of the following maps define an action. Furthermore, determine the faithfulness of the actions, characterize the orbits and stabilizers of the actions, and verify the orbit-stabilizer theorem where ever applicable.
 - (a) For a set $X \neq \emptyset$, $S(X) \times X \to X : (f, x) \mapsto f(x)$.
 - (b) For a group G, $\operatorname{Aut}(G) \times G \to G : (\varphi, g) \mapsto \varphi(g)$.
 - (c) $S_n \times \{1, 2, \dots, n\} \to \{1, 2, \dots, n\} : (\sigma, i) \mapsto \sigma(i).$
 - (d) $D_{2n} \times \{e^{i2\pi k/n} : 0 \le k \le n-1\} \to \{e^{i2\pi k/n} : 0 \le k \le n-1\} :$ $(r, e^{i2\pi k/n}) \mapsto e^{i2\pi (k+1)/n} \text{ and } (s, e^{i2\pi k/n}) \mapsto e^{-i2\pi k/n}.$
 - (e) $\mathbb{R} \times \mathbb{C} \to \mathbb{C} : (x, re^{i\theta}) \mapsto re^{i(\theta+x)}.$
 - (f) $\mathbb{Z}_2 \times S^2 \to S^2$: $(1, (x, y, z)) \mapsto (-x, -y, -z)$, where S^2 is unit sphere centered at origin in \mathbb{R}^3 .
 - (g) $\operatorname{GL}(n,\mathbb{R}) \times \mathbb{R}^n \to \mathbb{R}^n : (A,v) \mapsto Av.$
- 2. Establish the assertion in and 4.4 (xi) of the Lesson Plan.
- 3. Show that a normal subgroup is a disjoint union of conjugacy classes including the trivial conjugacy class.
- 4. Let G be a group, H < G, and $S \subset g$.
 - (a) Let $\langle\!\langle S \rangle\!\rangle$ be the intersection of all normal subgroups of G containing S (also known as the *normal closure* of S in G). Show that

$$\langle\!\langle S \rangle\!\rangle = \langle \{gsg^{-1} : g \in G \text{ and } s \in S\} \rangle.$$

(Note that $\langle\!\langle S \rangle\!\rangle$ is also the smallest normal subgroup of G containing S.)

(b) Show that $H \triangleleft N_G(H)$. Furthermore, show that $N_G(H)$ is the largest subgroup of G in which H is normal.

(c) Show that

$$Z(G) = \bigcap_{g \in G} C_G(g).$$

- (d) Show that if all elements of S commute with each other, then the largest subgroup of G whose center contains S is $C_G(S)$.
- (e) Show that $C_G(S) \triangleleft N_G(S)$. Moreover,

$$N_G(H)/C_G(H) \cong K,$$

where $K < \operatorname{Aut}(H)$.

- 5. Consider the group A_n for $n \ge 3$.
 - (a) Classify the normal subgroups of A_4 .
 - (b) Compute the conjugacy classes of A_5 .
 - (c) Show that A_n is generated by the set of 3-cycles $\{(a \, b \, c) : 1 \leq a < b < c \leq n\}$.
 - (d) For $n \ge 5$, show that any two 3-cycles in A_n are conjugate.

Problems for submission

(Due: 14/09/2023)

- 1. Establish the assertions in 4.3.2 (iii) of the Lesson Plan.
- 2. Solve 1(c) and 1(d) from the practice assignment above. Use your solutions to show that $D_{2n} < S_n$ for $n \ge 3$.