MTH 301: Group Theory

Assignment II: Group Actions

Practice assignment

1. Show that each of the following maps define an action. Furthermore, determine the faithfulness of the actions, characterize the orbits and stabilizers of the actions, and verify the orbit-stabilizer theorem wherever applicable.
(a) For a set $X \neq \emptyset, S(X) \times X \rightarrow X:(f, x) \mapsto f(x)$.
(b) For a group $G, \operatorname{Aut}(G) \times G \rightarrow G:(\varphi, g) \mapsto \varphi(g)$.
(c) $S_{n} \times\{1,2, \ldots, n\} \rightarrow\{1,2, \ldots, n\}:(\sigma, i) \mapsto \sigma(i)$.
(d) $D_{2 n} \times\left\{e^{i 2 \pi k / n}: 0 \leq k \leq n-1\right\} \rightarrow\left\{e^{i 2 \pi k / n}: 0 \leq k \leq n-1\right\}:$ $\left(r, e^{i 2 \pi k / n}\right) \mapsto e^{i 2 \pi(k+1) / n}$ and $\left(s, e^{i 2 \pi k / n}\right) \mapsto e^{-i 2 \pi k / n}$.
(e) $\mathbb{R} \times \mathbb{C} \rightarrow \mathbb{C}:\left(x, r e^{i \theta}\right) \mapsto r e^{i(\theta+x)}$.
(f) $\mathbb{Z}_{2} \times S^{2} \rightarrow S^{2}:(1,(x, y, z)) \mapsto(-x,-y,-z)$, where S^{2} is unit sphere centered at origin in \mathbb{R}^{3}.
(g) $\operatorname{GL}(n, \mathbb{R}) \times \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}:(A, v) \mapsto A v$.
2. Establish the assertion in and 4.4 (xi) of the Lesson Plan.
3. Show that a normal subgroup is a disjoint union of conjugacy classes including the trivial conjugacy class.
4. Let G be a group, $H<G$, and $S \subset g$.
(a) Let $\langle\langle S\rangle\rangle$ be the intersection of all normal subgroups of G containing S (also known as the normal closure of S in G). Show that

$$
\langle\langle S\rangle\rangle=\left\langle\left\{g s g^{-1}: g \in G \text { and } s \in S\right\}\right\rangle .
$$

(Note that $\langle\langle S\rangle\rangle$ is also the smallest normal subgroup of G containing S.)
(b) Show that $H \triangleleft N_{G}(H)$. Furthermore, show that $N_{G}(H)$ is the largest subgroup of G in which H is normal.
(c) Show that

$$
Z(G)=\bigcap_{g \in G} C_{G}(g)
$$

(d) Show that if all elements of S commute with each other, then the largest subgroup of G whose center contains S is $C_{G}(S)$.
(e) Show that $C_{G}(S) \triangleleft N_{G}(S)$. Moreover,

$$
N_{G}(H) / C_{G}(H) \cong K
$$

where $K<\operatorname{Aut}(H)$.
5. Consider the group A_{n} for $n \geq 3$.
(a) Classify the normal subgroups of A_{4}.
(b) Compute the conjugacy classes of A_{5}.
(c) Show that A_{n} is generated by the set of 3-cycles $\{(a b c): 1 \leq a<$ $b<c \leq n\}$.
(d) For $n \geq 5$, show that any two 3 -cycles in A_{n} are conjugate.

Problems for submission

(Due: 14/09/2023)

1. Establish the assertions in 4.3 .2 (iii) of the Lesson Plan.
2. Solve $1(\mathrm{c})$ and $1(\mathrm{~d})$ from the practice assignment above. Use your solutions to show that $D_{2 n}<S_{n}$ for $n \geq 3$.
